Q Exactive GC QuickStart Guide

About This Guide

This Q Exactive GC QuickStart Guide gives an introduction on setting up and using the Thermo Scientific[™] Q Exactive GC mass spectrometer. This guide is intended for all personnel who operate the Q Exactive GC mass spectrometer.

Please note that this guide does not contain any safety notices and precautionary statements. Thus, it is mandatory to read also the *Q Exactive GC Operating Manual* and the *Q Exactive GC Preinstallation Requirements Guide*.

Q Exactive GC Tune

Use Q Exactive GC Tune to operate the Q Exactive GC mass spectrometer via the data system computer. It has the following components:

- The *menu bar* provides drop-down menus with commands for operating the program. On its right side it shows the active user role.
- The *toolbar* provides symbol shortcuts for frequently used commands.
- The *tasks panel* provides six windows: Instrument Control, Tune, Mass Traces, Calibrate, Evaluate, and Vacuum/Bakeout. The *instrument control window* is divided into three additional windows for defining scan parameters, setting EI/CI source parameters, and acquiring and storing measurement data.

Display Panel (Spectrum Window,

• The *display panel* provides various windows for showing real-time information about the current measurement and the instrument status.

Instrument Status Window, and Messages Window opened)

Menu Bar Toolbar User role

Instrument Status Window opened)

Menu Bar Toolbar Toolbar User role

Instrument Status Window opened)

Instrument Status Window opened)

Instrument Status Window opened)

To display the Q Exactive GC Tune program

Choose Start > Programs > Thermo Exactive Series > Tune.

Before going on, check that the following preconditions are fulfilled:

- The main power circuit breaker switch is in the On (|) position and the electronics service switch is in the Operating Mode position, the gas pressure is within the operational limit, and the vacuum levels are sufficient for operating the instrument.
 - Refer to the *Q Exactive GC Operating Manual* for instructions about turning on the GC with vacuum compensation.
- The data system computer with the Q Exactive GC Tune software is switched on and the mass spectrometer is placed in Standby mode.

NOTICE Unless the instrument is undergoing maintenance or service, it should be left in Standby mode when not in use. Power supplies and trap gas are stable in Standby mode. If the instrument is in the Off mode, wait 90 minutes before calibrating the system. **\(\Lambda \)**

For information about performing these tasks, refer to the Q Exactive GC Operating Manual, the Q Exactive GC Software Manual or the Q Exactive GC Tune Help.

This topic describes how to test the instrument before you can calibrate your Q Exactive GC mass spectrometer automatically.

Getting Ions Experiments

Setting up **Q** Exactive GC Tune

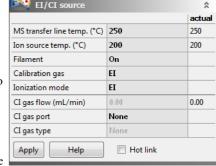
❖ To set up the mass spectrometer in the Q Exactive GC Tune software for tuning and calibration

- 1. If you have not already done so, choose Start > Programs > Thermo Exactive Series> Tune to start the Q Exactive GC Tune program.
- 2. In the Q Exactive GC Tune window, on the toolbar, click the **On/Off/Standby** button to take the mass spectrometer out of the Standby mode or Off mode and turn it On. When you turn the mass spectrometer to On, you initiate the following events:
 - The mass spectrometer begins scanning.
 - Nitrogen flows into the C-Trap and HCD cell.
 - The spectrum window of Q Exactive GC Tune shows a real-time display of the mass spectrum.
- 3. Open an existing tune file:
 - a. Choose File > Load Tune File to display the Open dialog box.
 - b. Browse for the folder C:\Xcalibur\methods\. Select a tune file.
 - c. Click **Open** to open the file. Q Exactive GC Tune downloads the Tune Method parameters to the mass spectrometer.

A tune file is specific to your particular analyte. You can load the tune file again and use it as a starting point for optimization of the mass spectrometer for a different analyte of interest.

- 4. Examine the pre-tune EI/CI source settings:
 - a. From the Instrument Control panel, open the EI/CI source window. See the figure on the right.
 - b. The default MS transfer line temperature is 250 °C.

NOTICE The MS transfer line temperature does not need to be set to the maximum oven program temperature because the outlet of the column in the MS transfer line is at reduced pressure.

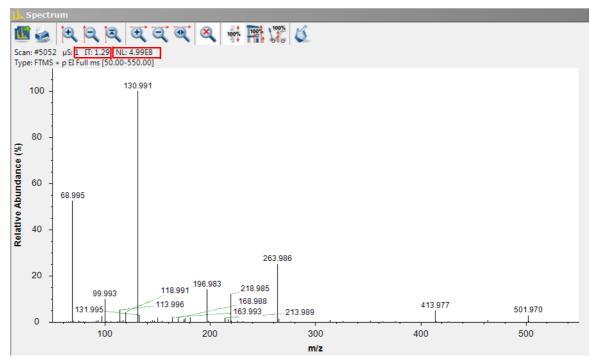

c. The default ion source temperature is 200 °C.

actual MS transfer line temp. (°C) 250 250 200 Ion source temp. (°C) 200 Filament On Calibration gas ΕI Ionization mode ΕI CI gas flow (mL/min) 0.00 CI gas port None CI gas type Hot link Apply

NOTICE The default settings for the ions source and MS transfer line temperature are 200 °C and 250 °C. These are the minimum recommended temperatures for a typical analysis with the installed test column. For best robust operation when running samples in matrix, it is recommended to set the ion source temperature higher than the MS transfer line temperature. For example, maximum settings recommended for of high boiling analytes in matrix are: ion source temperature set to 350 °C and MS Transfer line set to 280 °C. ▲

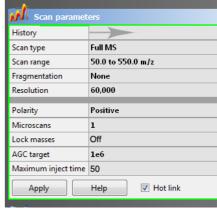
- d. Turn the filament to On.
- e. Set the calibration gas to EI.
- f. Set the *ionization mode* to EI or CI depending on the installed ion volume.
- g. If using CI mode, set the CI gas flow to 1.5 mL/min.
- h. Set the CI gas port to A or B as installed.
- i. See the Q Exactive GC Operating Manual for instructions to configure the CI gas type installed at Ports A and B.
- j. If you have made any changes in the window, click Apply.

NOTICE Select the Hot link check box to apply all changes in real time. A green frame around the parameter box indicates an active hot link. **\(\Lambda \)**


- 5. Set the scan parameters for tuning and calibration:
 - a. From the Instrument Control panel, open the Scan parameters window. See the figure on the right.
 - b. Set Scan type to Full MS.
 - c. Enter a scan range between m/z 50 and 550.
 - d. Set *Fragmentation* to *None* to specify that the HCD fragmentation option is turned off.
 - e. Select 60000 for Resolution.
 - f. Set the ion polarity mode to Positive.
 - g. Set the total number of microscans to 1.
 - h. Set Lock masses to Off.
 - i. Select 1e6 for AGC target.
 - j. Specify a maximum injection time of 50 ms.
 - k. If you have made any changes in the window, click Apply or select the Hot link check box.

The mass spectrometer is now properly set up for tuning and calibration in the EI mode.

In this section, you can test whether the mass spectrometer is operating properly. Admit a low flow of calibration gas for EI mode—containing perfluorotribuylamine. Monitor the real-time display of the mass spectrum to ensure that the signal is stable.


1. At the top of the spectrum window, notice the values for the inject time (IT) in milliseconds and the normalized target level (NL). Reasonable performance on a clean, tuned system in EI mode shows the Inject Time is typically less than 5 ms and the height of the tallest peak is typically greater than 1-e8. See figure below.

- Observe the values for NL and IT in the spectrum window. Check the ion current and readback values while scanning calibration gas:
 - Is the signal present?
 - Is the signal stable? Check in the instrument status window that the TIC variation has stabilized at 10% or less from scan to scan (green check mark). See the figure on the right.

■ Instrument

If you answered "yes" to the questions in step 2, then your mass spectrometer is operating properly.

If you answered "no" to either of these questions, try the following troubleshooting measures:

- Ensure that the EI ion volume is installed in the ion source cartridge.
- Ensure that the ion source cartridge is properly inserted into the ion source block.
- Ensure that the transfer line nut is not leaking air. It will leak if cooled from high to low temperature quickly.

Your mass spectrometer is operating properly in EI mode. You are now ready to calibrate the mass spectrometer.

Mass Calibration

The Q Exactive GC mass spectrometer should be calibrated to ensure the mass accuracy of the results. Usually, it is sufficient to perform a mass calibration only. Before starting the calibration, check again that you have a stable ion signal: Focus on the injection time (IT) and on the normalized level (NL) in the header information on the spectrum window.

NOTICE If the system was in Off mode before, it is necessary to put the instrument into On mode for at least 90 minutes before a mass calibration is performed. The filament and calibration gas do not need to be on during this time.

Positive Ion Mode Calibration

ullet To calibrate the Q Exactive GC mass spectrometer for positive ion mode

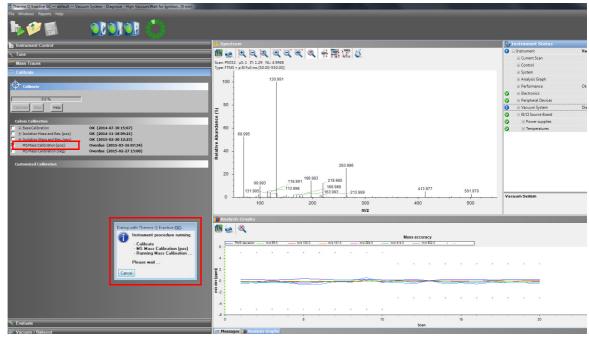
1. Click the **On/Off/Standby** button to take the mass spectrometer out of the Standby mode or Off mode and turn it On.

NOTICE Any time the system is placed in standby or off, the calibration gas and filament are turned off. The Calibration gas will show the last level set (EI or CI) when the system was on, when in standby or off mode and the displayed level will be set on again when the system is set On. The filament will show off when placed in Standby or Off mode and it must be set to on in order for the filament to turn on when setting the system to On. The filament and calibration gas may be turned on when in standby mode by making the appropriate selection and selecting apply or using the Hot link.

- 2. Turn the **Filament** on and set the **Calibration Gas** to EI.
- 3. Click the title bar of the Calibrate window to display it.
- 4. In the Calmix Calibration sub-window, select the MS Mass Calibration (pos) check box to specify a mass calibration for the positive ion mode. See the figure on the right.
- 5. In the Calibrate window, click **Calibrate** to start the automatic calibration procedure:
- Calibrate

 Calmis Calibration

 Esolation Mass and Res.


 MS Mass Calibration (neg)

 MS Mass Calibration (neg)

 MS Mass Calibration (neg)

 Overdue (2011-05-05 13:31)
- The Calibrate window indicates the completed percentage of the calibration process by a progress bar.
- Q Exactive GC Tune displays a message box with information about the active calibration procedure and the currently calibrated parameter.
- The analysis graphs window displays a graphic representation of the calibration process for the currently tuned parameter.
- The messages window shows a record of the calibration.
- A link to a report of the calibration is available in the **Reports** menu.
- 6. An icon appears on the toolbar to indicate an active procedure.

7. A message box appears when the calibration procedure is completed. The message box also informs you that Q Exactive GC Tune has automatically saved the calibration results. Click **OK** to close the message box.

Before you can start analyzing samples in MS/MS mode, you must ensure that the quadrupole isolation performance for the narrow isolation window is sufficient. Therefore, evaluate the isolation calibration for the positive ion mode as described on page 6.

Before performing measurements in the negative ion mode, the mass spectrometer must be set up for and calibrated in NCI.

❖ To calibrate the Q Exactive GC mass spectrometer for negative ion mode

- 1. Click the **On/Off/Standby** button to take the mass spectrometer out of the Standby mode or Off mode and turn it On.
- 2. Insert the CI ion volume into the ion source cartridge and reinsert the ion source cartridge.
- 3. Change the **CI Gas Type** to methane. Use methane gas for all built-in calibrations.
- 4. Set the CI Gas Flow to 1.25 mL/min.
- 5. Turn on the **Filament** and CI level calibration gas.
- 6. In the spectrum window of Q Exactive GC Tune, observe the mass spectra of the singly-charged ions of the negative ion mode calibration gas.
- 7. Click the title bar of the Calibrate window to display it.
- 8. In the Calmix Calibration sub-window, select the MS Mass Calibration (neg) check box to specify a mass calibration for the negative ion mode.
- 9. In the Calibrate window, click **Calibrate** to start the automatic calibration procedure.
- 10. The Calibrate window indicates the completed percentage of the calibration process by a progress bar. See the figure on the right.
- 11. A message box informs you when the calibration procedure is completed. Click **OK** to close the message box.

OK (2011-05-23 13:20)
OK (due in 22 hours)

Overdue (2011-05-05 13:31)

If the evaluation of the quadrupole isolation as described on page 6 fails, you must calibrate isolation mass and resolution of the quadrupole. This ensures that the quadrupole isolation performance for the narrow isolation window is sufficient for analyses. The following example describes this calibration procedure for the positive ion mode.



* To calibrate isolation mass and resolution of the quadrupole

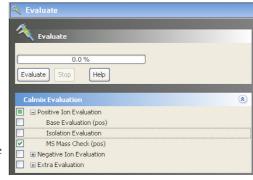
- 1. Click the **On/Off/Standby** button to take the mass spectrometer out of the Standby mode or Off mode and turn it On.
- 2. Insert the CI ion volume into the ion source cartridge and reinsert the ion source cartridge.
- 3. Change the **CI Gas Type** to methane. Use methane gas for all built-in calibrations.
- 4. Set the CI Gas Flow to 1.25 mL/min.
- 5. Turn on the filament and CI level calibration gas.
- 6. Click the title bar of the Calibrate window to display it.
- 7. In the Calmix Calibration sub-window, select the Isolation Mass and Res. check box. See the figure on the right.
- 8. In the Calibrate window, click **Calibrate** to start the automatic calibration procedure.
- 9. The Calibrate window indicates the completed percentage of the calibration process by a progress bar.

10. A message box informs you when the calibration procedure is completed. Click **OK** to close the message box.

The Q Exactive GC mass spectrometer is now ready to perform your measurements.

Evaluation

Evaluation of Positive Mass Calibration



Use the Evaluate window of the Tasks panel to perform an automatic check of the instrument calibration.

The following example describes an evaluation of the positive mass calibration.

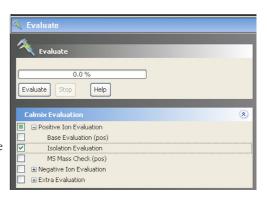
To evaluate mass calibration for positive ion mode

- 1. Click the **On/Off/Standby** button to take the mass spectrometer out of the Standby mode or Off mode and turn it On.
- 2. Turn on the filament and calibration gas.
- 3. Click the title bar of the Evaluate window to display it.
- 4. In the Calmix Evaluation sub-window, select the MS Mass Check (pos) check box to evaluate the mass calibration for the positive ion mode. See the figure on the right.
- 5. In the Evaluate window, click **Evaluate** to start the automatic evaluation procedure.
- 6. The Evaluate window indicates the completed percentage of the evaluation process by a progress bar.
- 7. A message box informs you when the evaluation procedure is completed. Click **OK** to close the message box.

If this evaluation fails, calibrate the Q Exactive GC mass spectrometer as described on page 4.

This example describes the evaluation of the isolation calibration for the positive ion mode.

Evaluation of Isolation Calibration



❖ To evaluate the isolation calibration for positive ion mode

- 1. Click the **On/Off/Standby** button to take the mass spectrometer out of the Standby mode or Off mode and turn it On.
- 2. Turn on the filament and calibration gas.

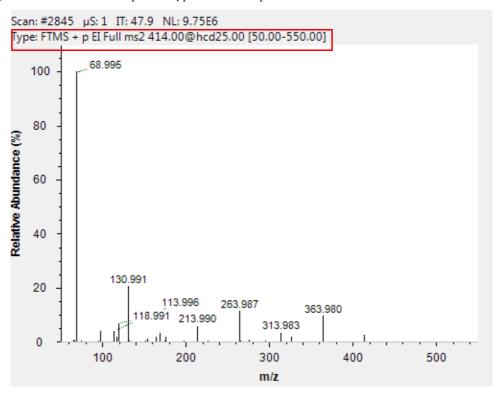
- 3. Click the title bar of the Evaluate window to display it.
- 4. In the Calmix Evaluation sub-window, select the Isolation Evaluation check box. See the figure on right.
- 5. In the Evaluate window, click **Evaluate** to start the automatic evaluation procedure.
- 6. The Evaluate window indicates the completed percentage of the evaluation process by a progress bar.
- 7. A message box informs you when the evaluation procedure is completed. Click **OK** to close the message box.

If this evaluation fails, please perform an "Isolation Mass and Resolution" calibration as described on page 5.

Other Experiment Types

Performing MS/MS Scans

In the previous examples, the Q Exactive GC mass spectrometer operates in the full scan mode. The following examples show the mass spectrometer operating in other scan modes.

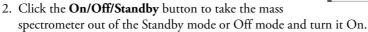

The following example shows an MS/MS experiment. Precursor ions that were selected by using the quadrupole are sent to the HCD collision cell of the Q Exactive GC mass spectrometer. Here, they are fragmented with Collision Energy (CE)

❖ To perform an MS/MS experiment

- 1. If necessary, calibrate your Q Exactive GC mass spectrometer as described above.
- 2. Set the scan parameters in the Scan parameters window:
 - a. In the Scan type field, select **AIF–MS/MS**. See the figure on the right.
 - b. In the Isolation area, enter a value for the precursor mass (m/z 414, for example).
 - c. Enter a width not larger than 10 amu (*m*/*z* 8, for example). Note that the scan type changes to MS/MS.
 - d. Click into the Fragmentation field to display the Fragmentation dialog box.
 - e. Select the HCD check box and enter the desired value for the collision energy (45, for example) into the spin box. See the figure on the right.
 - f. Click into the Scan Range field to display the Scan Range dialog box.
 - g. Adjust the scan range according to your requirements (from m/z 50 to m/z 550, for example). See the figure on the right.
 - h. If necessary, adjust the other scan parameters according to your requirements.
 - i. Click **Apply** or select the Hot link check box.
- 3. Perform the data acquisition as described on page 8.

The figure below shows an example of a typical MS/MS spectrum.

Data **Acquisition**


After you have entered the scan parameters of your experiment, you can finally start to acquire data.

To perform data acquisition from Tune

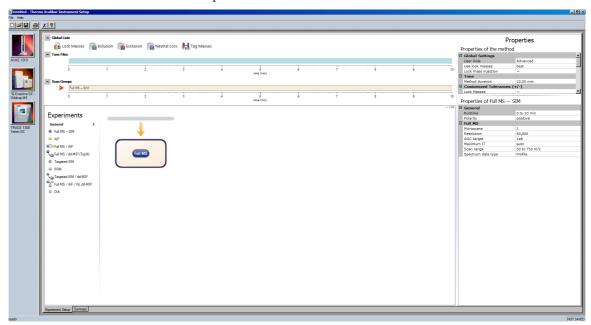
- Specify the acquisition parameters in the Acquisition window:
 - a. In the Destination file field, type the full path (Drive:\path\file name) of the raw file that is used to store the acquired data. Alternatively, click the button to the right of the text box to open a dialog box to browse your directories. See the figure on the right.
 - b. Click into the Acquisition time field to open the dialog box. Select the continuously option button to specify that the acquisition will continue until you click **Stop**. The Acquisition time field shows *continuously*.
- Acquisition
 Acquisition state
 Progress
 0.00 min
 File in use
 C:\Xcalibur\data\tune.RAW

 Destination file
 Method file
 Acquisition time
 Sample
 Comment
 On start
 After acquisition
 Start

 Pause
 Help

- 3. Turn on the filament.
- 4. In the Acquisition window, click **Start** to initiate the data acquisition. The spectrum window shows a real-time display of the mass spectrum. The data are saved in the selected raw file.
- 5. Click **Stop** to stop the acquisition.

Setting up and Running Methods

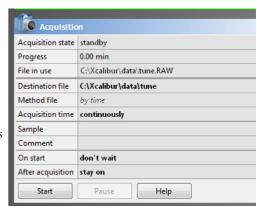

The following example describes how to create an instrument method in the Instrument Setup view of the Thermo Scientific^T Xcalibur^T software application. You can then use the instrument method to acquire data with the Q Exactive GC mass spectrometer. The tune file used in the instrument method is used for data acquisition. Make sure in the Q Exactive GC Tune software that your tune file has appropriate settings and save it accordingly.

Creating the Instrument Method

❖ To set up an instrument method

- 1. Display the Instrument Setup page in Xcalibur:
 - a. Choose **Start > Programs > Thermo Xcalibur > Xcalibur** to display the Xcalibur Home Page window.
 - b. Choose **GoTo** > **Instrument Setup** to display the Instrument Setup window.
 - c. If necessary, click **Q Exactive GC Orbitrap MS** in the View bar to display the Method Editor.
- 2. In the Method Editor, drag an experiment symbol (for example, Full MS SIM) from the Experiments pane (lower left) to the gray bar in the Graph pane. A corresponding time bar is displayed in the Scan Groups pane.
- 3. Edit the fields of the Properties pane (right) to set up the experiment parameters. Refer to the *Q Exactive GC Software Manual* or the Q Exactive GC Tune Help for a description of the available parameters.
- 4. Assign a tune file:
 - a. On the External Hardware pane, click the **V** Tune Files icon to expand the Tune Files pane.
 - b. In the Properties of Tunefiles pane, click the Base Tunefile field.
 - c. Click the button to open a dialog box.
 - d. Browse for the tune file (for example, ab.mstune) and assign it to the experiment.
- 5. Click on the toolbar to save the new instrument method:
 - a. In the Save As dialog box, enter the name (Full_MS.meth, for example) and the location for your instrument method. Then click **Save**.
 - b. In the File Summary Information Dialog Box, enter a comment as header information for your instrument method. Then click **OK** to close the dialog box.

The instrument method can now be used to acquire data with your Q Exactive GC mass spectrometer, either from the Xcalibur Sequence Setup or from the Q Exactive GC Tune window. The next figure shows the example of an instrument method that was set up as described above.


Thermo Scientific 9 P/N 1R120706-0004, Revision A

Running the Q Exactive GC Mass Spectrometer

This section shows an example of how to use an instrument method to run the Q Exactive GC mass spectrometer.

❖ To run the Q Exactive GC mass spectrometer with an instrument method

- 1. Specify the acquisition parameters in the Acquisition window of Q Exactive GC Tune, as follows:
 - a. In the Destination file field, type the full path (Drive:\path\file name) of the raw file that is used to store the acquired data. See the figure on the right.
 - b. In the Method file field, click the button to the right of the field to browse the computer for the instrument method file that was created in the previous topic. The Acquisition time field shows by method.
- 2. Click the **On/Off/Standby** button to take the mass spectrometer out of the Standby mode or Off mode and turn it On.

If necessary, Q Exactive GC Tune appends a time stamp to the name of the destination raw file to prevent overwriting existing files.

When the Scan parameters window and the Spectrum window are monitored, it is possible to view how Q Exactive GC Tune changes the values according to the settings defined in the instrument method.

The acquisition ends when the acquisition time, defined in the instrument method, has expired. To display the raw file with the acquired data in Qual Browser, click the button in the File in use field.

After Operation

When the measurement is finished, Thermo Fisher Scientific recommends leaving the Q Exactive GC mass spectrometer in Standby mode and not in Off mode to provide the best mass accuracy for the next analysis.