

Deconvolution Plugin for ISQ LT, TSQ 8000 Evo, and Q Exactive GC Mass Spectrometers

Software Manual

1R120706-0006 Revision B February 2016

© 2016 Thermo Fisher Scientific Inc. All rights reserved.

Thermo Fisher Scientific Inc. All rights reserved.

Exactive, Orbitrap, TraceFinder, and Xcalibur are registered trademarks of Thermo Fisher Scientific Inc. in the United States.

The following are registered trademarks in the United States and possibly other countries: Adobe and Reader are registered trademarks of Adobe Systems Inc. Excel, Internet Explorer, Microsoft, and Windows are registered trademarks of Microsoft Corporation.

Data Dependent and Q Exactive are trademarks of Thermo Fisher Scientific Inc. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.

Thermo Fisher Scientific Inc. provides this document to its customers with a product purchase to use in the product operation. This document is copyright protected and any reproduction of the whole or any part of this document is strictly prohibited, except with the written authorization of Thermo Fisher Scientific Inc.

The contents of this document are subject to change without notice. All technical information in this document is for reference purposes only. System configurations and specifications in this document supersede all previous information received by the purchaser.

This document is not part of any sales contract between Thermo Fisher Scientific Inc. and a purchaser. This document shall in no way govern or modify any Terms and Conditions of Sale, which Terms and Conditions of Sale shall govern all conflicting information between the two documents.

Release history: Revision A released in July 2015; Revision B released in February 2016.

Software version: Exactive Series 2.7 or later; TraceFinder 4.0 or later

For Research Use Only. Not for use in diagnostic procedures.

Contents

Preface		.v
Related Documentation		. v
System Requirements		vii
Cautions and Special Notices		vii
Contacting Us	v	iii
Deconvolution Plugin Application		.1
Setting Up the Deconvolution Plugin		
Functional Description		. 3
Sample View		. 3
Workflow		. 8
Acquiring Data		. 8
Processing the Data	•••••	11
Filtering Processed Data and Removing Unwanted Peaks		18
Cross-Sample Compound Alignment (Optional)	, 	22
Exporting Library Hits to the NIST Library		25
Importing Results into TraceFinder Software		28
Creating a Report		33

C

Preface

This guide provides reference information about the parameters in the Thermo Scientific Deconvolution Plugin application within Thermo Scientific[™] TraceFinder[™] software for gas chromatography (GC) and mass spectrometry (MS) instruments. The Deconvolution Plugin can be used with the following GC-MS systems:

- Thermo Scientific[™] Q Exactive[™] GC Mass Spectrometer
- Thermo Scientific[™] ISQ[™] LT Mass Spectrometer
- Thermo Scientific[™] TSQ[™] 8000 Evo Mass Spectrometer

Contents

- Related Documentation
- System Requirements
- Cautions and Special Notices
- Contacting Us

Related Documentation

The Deconvolution Plugin application includes complete documentation. In addition to this guide, you can also access the following documents as PDF files from the data system computer:

If you have a Q Exactive GC mass spectrometer, the manuals on your data system are:

- Q Exactive GC Preinstallation Requirements Guide: PN 1R120706-0001
- Q Exactive GC Operating Manual: PN 1R120706-0002
- Q Exactive GC Software Manual: PN 1R120706-0003
- Q Exactive GC Quick Start Guide: PN 1R120706-0004
- To view the product manuals

Go to Start > Programs > Thermo Exactive Series > Manuals.

If you have a TSQ 8000 Evo mass spectrometer, the manuals on your data system are:

- TSQ 8000 Evo Preinstallation Requirements Guide: PN 1R120568-000
- TSQ 8000 Evo User Guide: PN 1R120568-0002
- TSQ 8000 Evo Hardware Manual: PN 1R120568-0003
- TSQ 8000 Evo Spare Parts Guide: PN 1R120568-0004
- TSQ 8000 Evo AutoSRM User Guide: PN 1R120568-0005

✤ To view the product manuals

Open the Manuals folder on your desktop.

If you have an ISQ LT mass spectrometer, the manuals on your data system are:

- ISQ Series Preinstallation Requirements Guide: PN 1R120555-0001
- ISQ Series Hardware Manual: PN 1R120555-0002
- ISQ Series User Guide: PN 1R120555-0003
- ISQ Series Spare Parts Guide: PN!r120555-0004

To view the product manuals

Open the Manuals folder on your desktop.

✤ To open Help

• From the Deconvolution window with the TraceFinder software application, choose **Help**.

For access to the application Help, follow this procedure.

To view application-specific Help

- From the application window, choose **Help > Deconvolution Plugin Help**.
- If information about setting parameters is available for a specific view, page, or dialog box, click **Help** or press the F1 key for information about setting parameters.
- In applications that have a Communicator bar, click the field or parameter to display definitions, required actions, ranges, defaults, and warnings.

For more information, visit www.thermoscientific.com.

System Requirements

The Deconvolution Plugin application requires a license. In addition, ensure that the system meets these minimum requirements.

IMPORTANT Before you install the device driver, ensure that the data system computer has a compatible version of the Thermo Foundation[™] platform and instrument control software as noted in the *Deconvolution Plugin 1.1 Release Notes*.

System	Minimum requirements
Computer	• 4.6 GHz processor with 16 GB RAM
	CD/R-Rom or DVD drive
	• 1000 GB or hard drive
	• Video card and monitor capable of 1680×1050 resolution
	Quad core processor
Software	• Adobe [™] Reader [™] 10
	 Microsoft[™] Windows[™] 7 SP1 (64-bit)
	• Thermo Foundation [™] 3.1 SP1
	• Thermo Scientific™ Xcalibur™ 4.0
	• TraceFinder 4.0
	Instrument Control Software ^a
	– GC Devices 3.2 or later
	- Exactive Series 2.7 or later (Q Exactive GC systems)
	 TSQ Series 3.2 or later (TSQ 8000 Evo systems)
	- ISQ Series 3.2 or later (ISQ LT systems)

^a Check latest release notes for version compatibility.

Cautions and Special Notices

Make sure you follow the cautions and special notices presented in this guide. Cautions and special notices appear in boxes; those concerning safety or possible system damage also have corresponding caution symbols.

This guide uses the following types of cautions and special notices.

CAUTION Highlights hazards to humans, property, or the environment. Each CAUTION notice is accompanied by an appropriate CAUTION symbol.

IMPORTANT Highlights information necessary to prevent damage to software, loss of data, or invalid test results; or might contain information that is critical for optimal performance of the system.

Note Highlights information of general interest.

Tip Highlights helpful information that can make a task easier.

Contacting Us

There are several ways to contact Thermo Fisher Scientific for the information you need.

To find out more about our products


Go to www.thermoscientific.com/en/products/mass-spectrometry.html for information about our products.

✤ To get local contact information for sales or service

Go to www.thermoscientific.com/en/support-landing/support.html.

To suggest changes to documentation or to Help

• Fill out a reader survey online at www.surveymonkey.com/s/PQM6P62 or send an e-mail message to the Technical Publications Editor at techpubs-austin@thermofisher.com.

Deconvolution Plugin Application

This chapter contains set-up information about, detailed descriptions of the functions, and a sample workflow for the Deconvolution Plugin application for TraceFinder software.

Contents

- Setting Up the Deconvolution Plugin
- Functional Description
- Workflow

Setting Up the Deconvolution Plugin

- To set up the Deconvolution Plugin
- 1. First, ensure the TraceFinder 4.0 software and the Deconvolution Plugin application are installed. If not, follow the instructions in the release notes or installation help files to install the programs.

- 2. Click the **TraceFinder 4.0 Administration Console** icon on your desktop. The Administrator Console opens.
- 3. In the Administrator Console, double-click Administration under Plugins. See Figure 1.

Note If you have enabled security, an administrator must log in to the TraceFinder Administrator Console before modifying plugin settings.

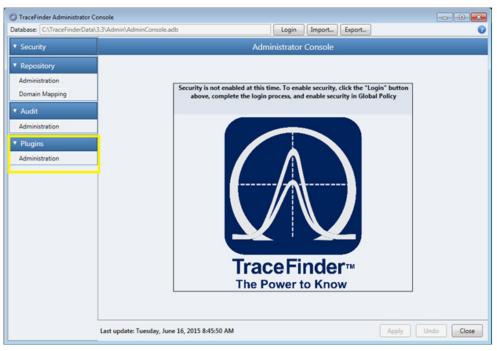


Figure 1. Configuring the Plugin Using the TraceFinder 4.0 Administrator Console

4. Check the box labeled **Thermo.Deconvolution** and click **Apply** to enable the Deconvolution Plugin application. See Figure 2.

Figure 2. Enabling the Deconvolution Plugin

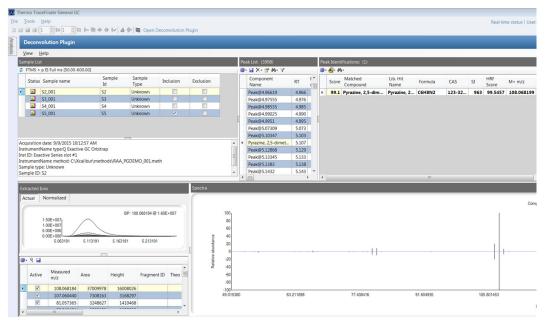
atabase: C:\TraceFinderD	Data\4.0\Admin\AdminConsole.adb
Security	Plugins - Administration
 Repository 	Changes made to plugin configuration will take effect the next time you start the application.
Administration Domain Mapping / Audit Administration / Plugins Administration	Enabled Name Signed Thermo.BlogViewer Thermo.Sive Thermo.Deconvolution Thermo.Deconvolution
	Configure
	Last update: Friday, October 30, 2015 10:57:07 AM Apply Undo Closs

5. Restart the TraceFinder application to view the plugin.

IMPORTANT If you want to use TraceFinder software itself to process data by unknown screening, you must uninstall the Deconvolution plug or your analysis will return no results. To uninstall the plugin, deselect **Thermo.Deconvolution** in the TraceFinder Administrator Console and restart the TraceFinder application.

Functional Description

This section contains descriptions of the functions of the Deconvolution Plugin application for TraceFinder software.


Sample View

The sample view of the Deconvolution Plugin application contains the following sections:

- Sample List
- Peak List
- Peak Identification
- Total Ion Chromatogram
- Extracted Ions
- Spectra

Figure 3 shows the Sample View of the Deconvolution Plugin application.

Figure 3. Deconvolution Plugin Sample View

Sample List

The Sample List window displays the names and identifying information of the samples in the batch. To switch between samples in a batch, click on the sample in the table. See Figure 4.

Figure 4. Sample List Window

2	FTMS -	+ p El Full ms (50.00-600)	00]			
	Statu	s Sample name	Sample Id	Sample Type	Inclusion	Exclusion
		\$2_001	\$2	Unknown		
1		\$3_001	\$3	Unknown		
		\$4_001	\$4	Unknown		
		\$5,001	\$5	Unknown	1	

Peak List

The Peak List window allows users to switch between chromatographic peaks which have been detected. The peak sets are named by the compound selected by the user in the Matched Compounds in the Peak Identification list. The peak list also lists retention times and summed ion intensities. See Figure 5.

Figure 5. Peak List Window

Pe	ak List: (3998)						
۲	• 🛃 🗙 • 🚰 🖓 • 🛛						
	Component Name	RT	Reference m/z	Area	Height	TIC	
	Peak@4.96619	4.966	50.981297	21777	17386	94338	
	Peak@4.97555	4.976	68.995422	33447	15326	211319	
	Peak@4.98535	4.985	63.928635	35754	17892	60484	
	Peak@4.99025	4.990	151.024063	219396	46623	148996	
	Peak@4.9951	4.995	149.044891	465276	99493	584944	
	Peak@5.07309	5.073	88.978851	357145	172614	566640	
	Peak@5.10347	5.103	97.101128	26130159	13345573	30367427	
۲	Pyrazine, 2,5-dimet	5.107	108.068184	37009978	16008026	24680692	
	Peak@5.12868	5.129	104.025665	21906	7428	21002	
	Peak@5.13345	5.133	489.123962	16004	7739	83992	
	Peak@5.1383	5.138	151.024063	94879	29671	365703	
	Peak@5.1432	5.143	225.042938	724030	233513	724534	
	Peak@5.16022	5.160	99.080467	53425	19729	59113	

Peak Identification

Figure 6. Peak Identification Window Export to NIST Icon Peak I <u>ه</u>٠ 🛃 🖓 ۰ Score Matched Compound Lib, Hit HRF Empirical M+ % Elements Library Formula CAS SI M+ m/z M+ Name Score Lib 99.1 Pyrazine, 2,5-dim... Pyrazine, 2... C6H8N2 123-32... 963 99.5457 108.068199 108.06... Yes 100 qegc full li..

The Peak Identification window uses the following criteria to identify compounds.

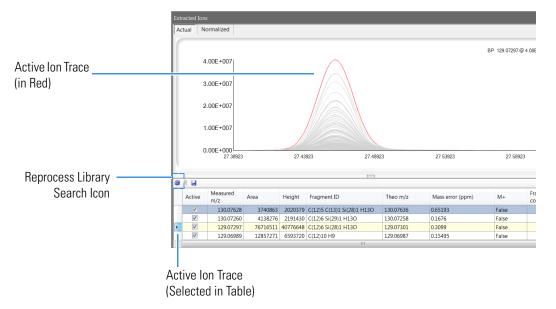
- Matched Compound The primary name of a compound in the selected library.
- Library Hit Name Alternate names for a compound that appear in the selected library.
- Formula The compound formula for each detected peak.
- **CAS Number** The CAS number for each compound detected.
- **SI** The search index score (0-999) for each compound detected returned by the NIST library search.
- HRF (High-Resolution Filtering) Score The percentage of the total ion chromatogram of the spectrum that can be explained by the chemical formula in the library search. A complete set of theoretical ions which could result from the chemical formula is generated from all non-repeating combinations of atoms. A simple example is the chemical formula C_2H_2 , which could produce the ions H+, H₂+, C+, CH+, CH₂+, C_2+ , C_2H+ , and C_2H_2+ . Each peak in the deconvolved experimental spectrum is checked to see if it is within the set mass tolerance of one of these possible ions from the original chemical formula. The intensity of the ions which match at least one possible ion from the original chemical formula is divided by the total ion current of the deconvolved experimental spectrum to give the HRF Score.
- M+ m/z The mass-to-charge of the molecular ion.
- **Score** Combined score (0-100) indicating quality of match between this library hit and the deconvolved experimental spectrum. It combines several metrics including SI and HRF Score.
- **M+** This value is set to **Yes** if the molecular ion is detected in the deconvolved experimental spectrum. See the Extracted Ion View.
- M+ Lib The value is set to Yes if the NIST spectrum has an ion at a *m/z* consistent with the molecular (M+) ion.
- % Elements This value is the percent of all the elements in the library hit formula that are found in at least one theoretical ion from the chemical formula assigned to a *m/z* in the deconvolved experimental spectrum.
- Library The name of the database used for the compound identification.

You can also switch between compound matches for a selected chromatographic peak set and select the correct compound ID. If you want to select a different compound than the one selected, right-click and choose **Select Library Hit**. If you want to deselect a compound—normally done if none of the listed compounds is the correct identification—highlight it in the list, right-click and choose **Deselect Library Hit**. Peaks without a selected library hit are named "Peak@x.xxx min." Library searches can be done on all or selected compounds. Users can export the accurate-mass deconvoluted spectra from the acquired compound to a .msp file that can be imported into the NIST MS Search program by clicking the **Export to NIST Library Icon**. See Figure 6. For instructions on exporting deconvolved spectra to the NIST Library, go to Exporting Library Hits to the NIST Library.

Total Ion Chromatogram

The Total Ion Chromatogram window displays a plot of the total ion chromatogram (TIC). Users may zoom in and out on chromatographic peaks. To view the TIC, select **View > Total Ion Chromatogram** from the top menu of the Deconvolution application. The selected chromatographic peak is highlighted. Users can select the active peak set by clicking on the marks in the TIC. The extracted ions for the selected binned peak set should be visualized at its retention time. See Figure 7.

Figure 7. Total Ion Chromatogram Window



Extracted lons

The Extracted Ions window displays an overlay of the extracted ion chromatogram peak set. It contains a list of ions found in the deconvolved experimental spectrum. The selected mass is always highlighted, and users can select different masses using this window. To select individual masses, click on the ion trace of interest in the window or click one of the rows in the table. See Figure 8.

The selected ion is also highlighted in the Spectra window. See Figure 9.

Figure 8. Extracted lons Window

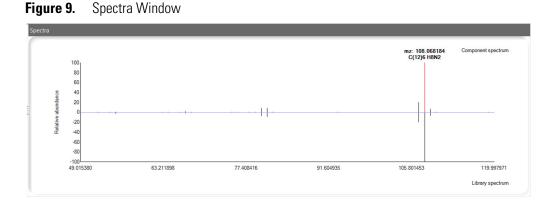
The mass list for the selected peak is displayed underneath the Extracted Ions window. The mass list has the following elements:

• Active — Lists whether or not the mass is active in the spectrum. All masses in the spectrum are defaulted to active.

Note Users can deactivate ions by removing the check from the **Active** box. Reprocessing the library search removes inactive ions from the spectrum.

- Measured *m/z* The measured mass-to-charge ratio of the active mass.
- Area This refers to the area under a peak for the measured *m/z*.
- **Height** This refers to the peak height for the measured *m/z*.
- Fragment ID The predicted fragment formula with the smallest mass error. If there is more than one fragment that could match the measured *m/z*, right-click and choose Show All Fragments For Mass to view the list of all possible fragments.

Note If fragment annotation was not selected in the processing parameter window when the batch was processed, right click within the mass list table and select **Annotate Spectrum** to identify the ions within the selected compound's spectrum.


• Fragment Count — This parameter refers to the number of theoretical fragments of the library search formula that fall within the set mass tolerance of the experimentally measured *m/z*. If this value is ≥1, we say this *m/z* is "explained" by the formula from the library hit. All ions with ≥1 fragment count are used to calculate the HRF Score.

Note To view all fragments for ions with ≥ 1 fragment count, right-click on the ion in the Fragment Count list and select **Show Other Fragments for Mass**.

- M+ (To view this parameter, click the magnifying glass in the Extracted Ions top menu) This value is set to True if this ion is within the set mass tolerance of the theoretical M+ of the chemical formula returned by the library search. This value is also set to True if no theoretical ion matches this ion. The M+ Yes/No in the Peak Identification View is not set to Yes unless an M+ was actually found in the spectrum.
- Theoretical *m/z* The mass-to-charge ratio as calculated from each Fragment ID.
- Mass Error (ppm) The relative mass error for the measured *m/z* relative to the theoretical *m/z*.

Spectra

The Spectra window displays the acquired deconvoluted spectra with mass precision to six decimal places for high-resolution date (two decimal places for unit-mass data) along with the currently selected library spectrum for comparison. The selected mass is highlighted. Users can select different masses in this window. Clicking on a mass peak shows the exact mass as well as the formula for the closest matching fragment. See Figure 9.

Workflow

The information below provides a sample workflow for the Deconvolution Plugin software. The workflow described here consists of the following sections:

- Acquiring Data
- Processing the Data
- Filtering Processed Data and Removing Unwanted Peaks
- Cross-Sample Compound Alignment (Optional)
- Exporting Library Hits to the NIST Library
- Importing Results into TraceFinder Software
- Creating a Report

For additional information, refer to the TraceFinder software user manuals or your mass spectrometer's user guide or software manual.

Acquiring Data

The first step in your workflow is to acquire data in the TraceFinder software application.

✤ To acquire data in TraceFinder software

- 1. First, go to **Method Development** in TraceFinder and create an unknown screening master method. See the TraceFinder software user documentation for instructions.
- Create a batch in the TraceFinder application. Select File > New > Batch. See Figure 10. You may also use the acquisition wizard in TraceFinder to acquire your batch.

Note It is recommended that you deselect **Alignment and Gap Filling** when setting up your TraceFinder software Master Method. This turns off the **With RT Alignment** processing function when submitting a batch for acquisition in TraceFinder software.

Thermo TraceFinder General GC												
File Batch Tools Help											Real tir	ne status L
New Batch	💶 🖡 🖶 📷 Open Deconvoluti	ion Plugin										
Open Batch using wizard Save Batch template	tch View											
Recent Files	Local											
Exit	Method:	-	Update	Instrument			User:					
Samples					Sample			Injection	Conversion	Barcode	Barcode	Sample
Auto Samples	Statı Filename	Sample type Groups	Level	Sample ID	name	Comment	Vial position	volume	Factor	Expected	Actual	Volume
Reference Sample												
Threshold Samples												
Data Review												
* Data Review												
Report View												
Local Method												
Deconvolution Plugin												
	<											

	Compound Active Status											
1	RT Compound	Active										
Acquisition												
Analysis												
Method Development												

Figure 10. Creating a Batch

3. The **Create New Batch** window opens. Name the batch, set **Type** to **Unknown Only** and select the master method you created in step 1 for your sequence. See Figure 11.

Note The Deconvolution Plugin application can only process full-scan MS scan filters, and only **one** scan filter per raw file. Use the guidelines below to determine if the application can process your raw file.

If you only want to peak detect and library search a raw file, and you have:

- A raw file with two full-scan MS filters that are identical except that one is a lock mass, the application uses the scan filter without the lock mass to process the raw file.
- A raw file with more than one non-identical full-scan MS filter, the application does not process the raw file and displays an error message.
- One full-scan MS filter (plus an optional matching lock mass filter) and a SIM, MS^X, PRM or other type of scan filter, the application uses only the full-scan MS filter without the lock mass to process the raw file.

If you want to retention time align multiple files, all the raw files in your batch must meet the above criteria and have **identical** full-scan MS filters.

🐼 Create New Batch					×
	Batch	Туре	Date Changed	Samples	Me
C:\TraceFinderData\4.0\Projects	Pest Target Screen	Screening	05-12-2015 10:31AM	2	Pes
Folder000	Pesticides	Unknown Or	05-13-2015 10:18AM	1	Ger
Unknowns	Pesticides Quan	Quan	05-12-2015 05:28PM	7	Pes
	<				•
	New Batch Demo Batch			Crea	te
	Type: Unknown Only Maste	er Method Gene	ral Unknown Test 🔹	Canc	el
C:\TraceFinderData\3.3\Projects					

Figure 11. Naming a Batch

4. Set up your sample list and click the acquire sample icon to acquire your samples. See Figure 12.

Figure 12. Acquiring Samples

	A	Acquire San	nple											
		con		Group	o Nam	es								
 Thermo TraceFinder General GC File Batch Tools Help Image: Image and Image an	• • • • •	🜢 💠 🕅 Open Q Exactiv	ve GC Unknowns Plugi	n									Real time	status Use
Analysis 👻 🤻	Batch	view - Demo Batch [Unknown]*											
▼ Batch View >	Loi Me	cal ethod: General Unknown 1	Test	•	Update	Instrument: T	hermo Scient	ific Instrument	User: jason.c	ole				
Samples		Stati Filename	Sample type	Gro ps	Level	Sample ID	Sample	Comment	Vial position	Injection volume	Conversion Factor	Barcode Expected	Barcode Actual	Sample Volume
Data Review	► 1	€ 1	Unknown	control					34	1.00	1.000			1
Unknown Screening View	2	 5 10 	Unknown Unknown	control group 1	-				36 37	1.00				1
Report View	4	● 10● 20	Unknown	group 1					38	1.00				1
Report view	5	S0	Unknown	group 2					39	1.00				1
 Local Method 	6	€ 200	Unknown	group 2					41	1.00	1.000			1
Acquisition														
Unknown Screening														
Processing														
Peak Detection Settings														
Reports														
	4					ш								
Q Exactive GC Unknowns Plugin								****						
		und Active Status												
	R	T Compound	Active											

Note If you already have acquired raw files and want to associated them with this batch, you may browse them in by double-clicking on a cell under **Filename** and choosing the raw file or files.

Note Name groups in the sequence and the application will use those groups to calculate fold changes and cv's. If you name a group "control," the software will use that as the basis with which to calculate the fold change. Samples with the same group name will be placed in the same group.

Processing the Data

Functional descriptions of the processing parameters and the workflow for processing data in Deconvolution Plugin application can be found in the following sections:

- Functional Description of Processing Parameters
- Data Processing Workflow

Functional Description of Processing Parameters

- * To access the processing parameters in the Deconvolution Plugin application
- 1. Click the processing icon in the **Peak List** window. See Figure 13.
- Figure 13. Locating the Processing Icon in the Peak List Window

Processing Icon

Component Name	RT	Reference m/z	Area	Height	TIC
-------------------	----	------------------	------	--------	-----

2. The Processing Parameters window opens. See Figure 14.

ocessing parameters	[
ettings	
Accurate mass tolerance (+/-)	5 - ppm
m/z SigToNoise Threshold	ppm 3∰
Use minimum RT:	8.000 💭 min.
Use maximum RT:	9.000 min.
TIC intensity threshold:	400000
lon overlap window	99 🚔 %
lons to use	
 Use all ions 	
Use top 20 ions	intensity proximity
RT Aligning RT window 10 🖨 sec.	
Libraries Allergens GC_MS LIBRARY Hig Res Lib V mainib Metabolomics High Res Lib New Library NIST Aliphatic Hydrocarbor nist_msms nist_msms2	
RSI 400 Penalize missing molecula Annotate fragments	
	Save Cancel

Figure 14. Viewing the Processing Parameters

- 3. Descriptions of available processing settings and how best to use them are below.
 - Accurate Mass Tolerance (+-) Enter the accurate mass tolerance that the software uses throughout the program.
 - **m/z SigToNoise Threshold** Enter the signal-to-noise threshold that the software uses to determine whether to include ions in each compound's deconvolved spectra.
 - **TIC Intensity Threshold** Enter the TIC intensity threshold that the software uses to determine whether to include compounds in the compound peak list. The TIC intensity is the summed intensity of all ions in a compound's spectra after passing through the deconvolution processing step.

- **Ion Overlap Window** Enter the peak height at which the software creates a retention time window around each compound's base peak in order to determine whether other closely eluting ions are grouped with this compound during the deconvolution process. If a lower intensity ion falls within this retention time window, and all other criteria is met (e.g. signal to noise threshold) it is grouped together with the base peak and other ions meeting this criteria to create the compound's deconvolved spectra. The higher the ion overlap window percentage, the less likely ions generated from two compounds are grouped within the same spectrum.
- **RT Aligning** Enter the retention time window that the software uses to look for a compound detected in one sample in all other samples during the retention time alignment process.
- Library Search Type Select Normal or HiRes from the Library Search Type drop-down menu. If the method uses an accurate mass library, select HiRes. If the method uses a unit resolution library select Normal.
- Libraries Choose the library or libraries you want to use, adjust the other settings as desired, and click **Save**. The available libraries depend on those installed on your system.
- SI (RSI) Enter the search index threshold that the software uses to determine whether to include a library hit in the **Peak Identifications** list. If a compound has no library hits above the entered threshold, it is still displayed in the Peak List as an unidentified peak. If it is desired to use the reverse search index rather than the search index, select the **Reverse Search** box.
- **Penalize Missing Molecular Ion** Check this box if it you wish to award extra points to a library hit's total score when the spectrum contains a molecular ion that matches the library hit's molecular formula within the set accurate mass tolerance. If this check box is not selected, all library hits will receive the points awarded for having the molecular ion of the library hit present in the spectrum.
- Annotate Fragments Check this box if you wish to annotate fragments of each identified compound during the library search processing step. This adds additional processing time. Identified compounds can be annotated individually after processing by right-clicking in the table at the bottom of the Extracted Ion Window (see Figure 8) and selecting Annotate Spectrum.

Data Processing Workflow

✤ To process your data in the Deconvolution Plugin application

1. Click **Open Deconvolution Plugin** on the top menu of the TraceFinder application or click the **Deconvolution Plugin** tab along the side menu. See Figure 15.

Thermo TraceFinder General GC										
File Tools Help									Real	time status
	● ● ₩ 🕹 🕆 🕅 Open De	convolution Plugin								
Analysis 👻 🕈	Deconvolution Plugi	n								
 Batch View 	View									
Samples	Sample List	Peak List		Peak Identification						
Samples	Status Sample name	Component	RT Reference		Lib. Hit		et HRF			M+ %
Data Review	1	Name	RT m/z	Score Compound	Name Formul	CAS	SI Score	M+ m/z	M+	Lib El
Unknown Screening View	5 10									
Report View	20 50									
Local Method	 200 III 									
Acquisition	Acquisition date:	÷ (•							
Unknown Screening	Extracted Ions			Spectra						
Processing	Actual Normalized			()						
Peak Detection Settings										
Reports										
Deconvolution Plugin	Active Measured	Area Height	Fragment ID Theo	E						
Acquisition										
Analysis										
Method Development	e									

Figure 15. Opening the Deconvolution Unknowns Plugin

- 2. (Optional) Click the pin icon on the **Analysis** tab to hide the side menu for better viewing. See Figure 16.
- 3. Click the **Refresh Sample List** button to synchronize your sample list with the Batch View. See Figure 16.

Thermo 8 M Deco ak List: (8) 副證書 RT Refer Lib. Hit Name Sampl Type Compo Score Matched CAS HRF Score ple list from TraceFinder Id Area Formula SI M+ m/z M+ Ret X 19 N III Fragment count Active Mea m/z red Area Fragment ID Theo m/z Mass error M+ Height

Figure 16. Hiding the Side Menu and Refreshing the Sample List

4. Click the settings icon to adjust the plugin settings. See Figure 17.

Figure 17. Locating the Settings Icon

Refresh Sample List

888	Help		🖶 🕅 Open Deco	onvolution P	lugin													Real time st
Decom	volution Plugin	8																
View Sample List		Peak List: (0)		_		Post	k Idanti	fication				_			_			
		🎯 • 🖬 📑 🛝 -					A B											
	Sample name	Component	RT - Refere	nce 🛆	rea				Lib. Hit	Formula	CAS	SI	HRF	M+ m/z	M+	M+	% Elements	Library
	5	Nam Settings	KI ^ m/z					Matched Compound	Name		00		Score			Lib	Elements	ciorary
	10					E												
	200																	
•																		
Acquisition	n date: 9/17/2014 💲		U)		+													
Extracted I	lons					Spe	ctra											
		100																
@ 9 B		100																
Active	e Measured m/z	Area Height	Fragment ID	Theo m/z	Mass error (ppm)													

Note For detailed descriptions of the processing settings, review the Functional Description of Processing Parameters.

5. The **Settings** dialog box opens. See Figure 18.

Figure 18. Ch	anging the	Settings
---------------	------------	----------

Processing parameters		8
Settings		
Accurate mass tolerance (+/-)	5 🌲	ppm
m/z SigToNoise Threshold	3 🌲	
Use minimum RT:	8.000	min.
Use maximum RT:	9.000 춪	min.
TIC intensity threshold:	4000000 🖨	
lon overlap window	99 🊔 9	6
lons to use		
Use all ions		
O Use top 20 → ions	intensity	nity
RT Aligning		
RT window 10 🚔 sec.		
Library search type:		
Library search type.	iRes 🔻	
Libraries		
Allergens		*
GC_MS LIBRARY		
✓ mainlib		E
Metabolomics High Res Lil	þ	
NIST Aliphatic Hydrocarbo	ns	
nist_msms		_
nist_msms2		
RSI 400	Reverse sea	rch
Penalize missing molecula	arion	
Annotate fragments		
	Save	Cancel

Note You must have NIST 2014 and at least one NIST-formatted library installed on your system.

6. Select **Normal** or **HiRes** from the **Library Search Type** drop-down menu. If using an accurate mass library, select HiRes. If using a unit resolution library select Normal. See Figure 19.

Processing parameters					
Settings					
Accurate mass tolerance (+/-)	10 🗮	ppm			
m/z SigToNoise Threshold	20 🌲				
Use minimum RT:	0.000	min.			
Use maximum RT:	0.000	min.			
TIC intensity threshold:	10000 🊔				
lon overlap window	95 羮	%			
lons to use					
Use all ions					
O Use top 20 ↓ ions	intensity Oproxi	mity			
RT Aligning					
RT window 10 🚔 sec.					
Library search type:	Res 💌				
N	ormal				
Libraries H	Res				
nist_msms					
nist_msms2					
replib					
SI 500 🖨 Reverse search					
Penalize missing molecula	arion				
Annotate fragments					
	Save	Cancel			
	Save	Gancel			

Figure 19. Selecting the Library Type

- 7. Choose the library or libraries you want to use, adjust the other settings as desired and click **Save**. The available libraries depend on those installed on your system.
- 8. In the **Peak List** box, select whether you want the application to do peak detection or peak detection and library search, and choose if you want to apply the settings to the current sample, the unprocessed samples, or all the samples in your list. For this example, we will select **Peak Detection and Library Search** applied to **All Samples**. See Figure 20.

Figure 20. Selecting the Peak Detection Settings

9. The plugin starts processing all the samples. The green status bars indicate the software is processing your samples. This may take a significant amount of time if you have a large number of samples or very large raw files. See Figure 21.

Note The Deconvolution Plugin application uses a lot of computer resources to process data as quickly as possible. Processing results during acquisition can interfere with raw file acquisition. Wait to process raw files until acquisition is complete or use separate computers to acquire and to process data. Closing all other applications on the PC where you are processing data will improve processing speed.

Thermo TraceFinder General GC File Tools Help																eal time status l
		🗧 📷 Open Q Exac	tive GC Unknow	ns Plugin												cor unic status į c
Q Exactive GC Unknown View	s Plugin															
Sample List	Peak List: (0)					ntification										
Status Sample name	@- 🛛 🗄 M-				帝-進											
I	Component Name	RT Referen m/z	ce Area		Sco	Matched Compound	Lib. Hit Name	Formula	CAS	SI	HRF Score	M+ m/z	M+	M+ Lib	% Elements	Library
5																
10 20																
S0																
200																
<																
Acquisition date: 9/17/2014 0	<										_					
Actual Normalized	Area Height	Fragment ID		Created Detecting Binning p	1 (1 of 6) red 14420: 4650 mass g peaks peaks ng libraries				Stop pr	ocessing						

Figure 21. Processing the Samples

Note You cannot use TraceFinder software while processing data in the Deconvolution Plugin application.

Filtering Processed Data and Removing Unwanted Peaks

This section describes how to apply filters to processed data and remove unwanted spectra from processed data. The workflow contains the following two subsections.

- Filtering Processed Data
- Removing Unwanted Peaks

Filtering Processed Data

This section describes how to apply filters to processed data.

To set a compound filter

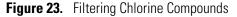

1. Click the compound filter icon. See Figure 22.

Figure 22. Setting a Compound Filter

Compound Filter Icon

<u>.</u>	· 🛃 × • 🖀 🙀 · 🏹		Deference	
	Component Name	RT	Reference m/z	
	Phenol, 2,4,6-trichloro-	9.112	195.923782	
	Ethylamine, N,N-dihexyl-2-(2-thiophenyl)-	9.132	197.921677	
	Phenol, 2,4,5-trichloro-	9.165	195.923782	
	Pyrazolo[4,3-c]pyrazole, 1,4-dihydro-3,6-dinitro-	9.179	197.921677	
	Benzamide, N-[3-(2,2,2-trifluoroethoxy)-5-nitrophenyl]-2-nitro-	9.232	150.045425	
	1,1'-Biphenyl, 4-fluoro-	9.241	172.066925	
	1,1'-Biphenyl, 4-fluoro-	9.265	172.067795	
•	Mathul propul N.N. dimathulphosphoreamidate	0 200	1/01/0010	[

2. The compound filter allows you to display only those compounds with a feature that you are interested in. For example, as shown in Figure 23 below, the peak list can be filtered to show only compounds with a deconvoluted spectra that contains a chlorine ion or common chlorine fragments. Similarly, chlorine containing compounds can be filtered by using the delta mass filter to pull out spectra that contain two mass differing by the mass difference between Cl³⁷ and Cl³⁵ isotopes.

Define filter
General
Min TIC intensity 80000000
Use RT range
Use maximum RT: 0.000 min.
Mass filters
✓ Use mass filter ✓ Spectra contains mass 100.00000 ♀ Name: ↓ Calculator +/- 5.000000 ♀ ppm ▼ ↓
Spectra contains mass delta 100 00000 * Name: [CI] 1.996049 - 1.998049 Calculator +/- 0.001000 * amu * =
Library filters Only show peaks with library hits
Filter on total score Total score threshold: 90 + Filter on (R)HRF score (R)HRF threshold 90 + Filter on (R)SI (R)SI threshold 800 +
Other criteria: None
Ok Cancel

3. When this filter is turned on, the number of peaks is reduced from 235 to 29. See Figure 24.

ermo TraceFinder General GC													- 6
Tools Help											Rea	al timo status	User: jason.cole 🕜
		🖶 🕅 Open Decon	volution Plugir	1							1100	in unite status ()	
Deconvolution Plugin													
View Help								_					
ample List			Peak Li						lentifications:	(58)			
FTMS + p EI Full ms [30.00-55			🔍 🕸 • 🖬	ו 🕾 ♣• 🔽 Filter active				@∙ ا	· #4-				
Status Sample name	Sample Id	Sample Type Inc	lusion Co	imponent Name		RT	Reference * m/z	So	ore Matched	Compound	Lib. Hit Name	Formula	CAS
ata02	19	Unknown	V He	xachlorocyclopentadiene		8.914	236.839752	+ 9	6.6 Phenol, 2	,4,6-trichloro-	Phenol, 2,4	C6CI3H3O	88-06-
			Phe	enol, 2,4,6-trichloro-		9.112	195.923782	E 9	6.4 Phenol, 2,	3,6-trichloro-	Phenol, 2,3,	C6CI3H3O	933-75-
				enol, 2,4,5-trichloro-		9.165			5.9 Phenol, 2,		Phenol, 2,3,		15950-
quisition date: 1/12/2016 12:	:02:27 PM			phthalene, 2-chloro-		9.395			5.4 Phenol, 2,		Phenol, 2,3,		933-78
trumentName type:Q Exactive				enol, 2,3,5,6-tetrachloro-		10.773			5.3 Phenol, 2,		Phenol, 2,4,		95-95-
t ID: Exactive Series slot #1			• Phe	enol. 2.3.4,6-tetrachloro-		10.836	231.881775	9	5.1 Carbonic	acid, ethyl 2,4,6-tifluor	Carbonic ac	C9CI3H7O3	
tual Normalized													
ctual Normalized													
2.50E+008 2.00E+008	(BP: 1	95.923782 @ 2.79E+008	100								Component spectrum
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+007 0.00E+000 9.030697	9.000697	9.1306997	BP. 1 9.180697	95 823782 @ 2.78E-008 9 230697	80 60 40				1			19. i	Component spectrum
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+007 0.00E+000		9.130697			80 60 40		-1/1-171010-6-1		1		a		Component spectrum
2.50E+008 2.00E+008 1.50E+008 5.00E+008 5.00E+000 9.030997	m/z Mass delta	9.130597			80 60 40		-1/1-1/11/11-4-1		p[1]10_200.0				Component spectrum
2.50E+008 2.00E+008 1.50E+008 5.00E+008 5.00E+000 9.030997	m/z Mass		9.180697 Height	9 230697	80 60 40		-ilfe-thester		r				Component spectrum
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+000 0.00E+000 9.030697	m/z Mass delta match	Area	9.180697 Height 2324489	9 230697 Fragment ID	80 60 40 20 70 80 40 40 40 40		-1/1-171010-to-		1			14 J	Component spectrum
2,50E+008 2,00E+008 1,50E+008 1,50E+008 5,00E+007 0,00E+000 0,00E+000 0,00E+000 0,00E+000 0,00E+000 0,00E+000 0,00E+000 0,00E+0080000000000000000000000000000000	m/z Mass delta match	Area 6022339	9.180697 Height 2324489 2532520	9 230697 Fragment ID	80 40 40 20 20 20 20 20 20		-th-th-storeway		p[r[a204			14 J	Component spectrum
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+007 9.000E+007 9.000E7 € iai Active Measured 2.000E9 2.000E7 2.0000E7 2.000E7 2.000E7 2.000E7 2.0000E7	m/z Mass delta match	Area 6022339 6570170	9.180697 Height 2324489 2532520	9 230697 Fragment ID C(12)1 C(135)1 C(12)3 H C(12)3 H C(12)3 H	50 60 40 20 20 0 40 40 40 40		-th-th-alter-seco		r				Component spectrum
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+007 0.00E+007 0.00E+007 9.03587 ♥ iai Active Messured ♥ iso805842 ♥ i 32001361 ♥ i 32001361	m/z Mass delta match	Area 6022339 6570170 1794853	9.180697 Height 2324489 2532520 722992	9 20697	80 60 40 20 70 80 40 40 40 40		-ilfi-ifiiliioto		p[_]112_212.4		41-14	м.)	Component spectrum
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+007 9.0.00E+007 9.0.00E+007 9.0.00E+007 9.0.00E+007 9.0.00E7 9.00E7	m/z Mass delta match	Area 6022339 6570170 1794853 57886959	9.180697 Height 2324489 2532520 722992 22475743 1216688 371500	9 230897	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-1/1-19				1-14	14 I	Component spectrum
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+007 0.00E+007 0.00E+000 9.03587 ♥ 44565842 ♥ 44565842 ♥ 4565842 ♥ 4565842 ♥ 4565842	m/z Mass delta match	Area 6022339 6570170 1794853 57886959 3155344	9.180697 Height 2324489 2532520 722992 2244574 1216688	9 230897	00 40 20 20 40 40 40 40 40 40 40		ll, h. a		r	11% 419016			
2.50E+008 2.00E+008 1.50E+008 1.00E+008 5.00E+007 0.00E+007 0.00E+007 0.00E+007 0.00E+007 0.00E+007 0.00E+007 0.00E+008 3.0007 € iai # 44.69342 0 43.69342 0 43.69342000000000000000000000000000000000000	m/z Mass delta match	Area 6022339 6570170 1794853 57886959 3155344 981948	9.180697 Height 2324489 2532520 722992 22475743 1216688 3613371500 8516374	9 23697 Fragment ID E C(12)2 (13)31 C(12)3 H2 C(12)3 H2 C(12)4 H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-1/1-17-4/0		1	126.419016		225354	200.021693

Figure 24. Peak Number Reduced after Filtering

The following describes the various types of filtering that can be applied to a data set:

- **Min TIC Intensity** Enter the TIC intensity threshold the software will use to filter compounds in the compound peak list.
- Use RT Range Enter the minimum and/or maximum retention time the software will display compounds in the compound peak list.
- Use Mass Filter Select if filtering by a mass or mass delta is desired.
 - **Spectra Contains Mass** Select to filter peak list to only display peaks that contain a certain mass or masses. If any of the masses in the mass filter are contained within a compound's spectrum, the compound will be displayed.
 - Spectra Contains Mass Delta Select to filter peak list to only display peaks
 that contain a certain delta mass or delta masses. If any two ions within a
 compound's spectrum have a difference in mass that meets any of the delta
 masses in the delta mass filter, the compound will be displayed.

For both types of mass filters, a calculator is provided for calculating the exact mass of the ion or delta mass. Example inputs for decane and its ¹³C isotope are shown below to demonstrate the format required for formula input:

- For decane $(C_{10}H_{12})$, the input into the calculator should be as follows: C10H22
- For the ¹³C isotope of decane (C₉¹³CH₂₂), the input into the calculator should be as follows (note the space required before and after the ¹³C isotope): C9 C(13) H22.

Figure 25 demonstrates how the mass delta calculator calculates the mass difference of the two major chlorine isotopes that were used in the filter shown in Figure 23.

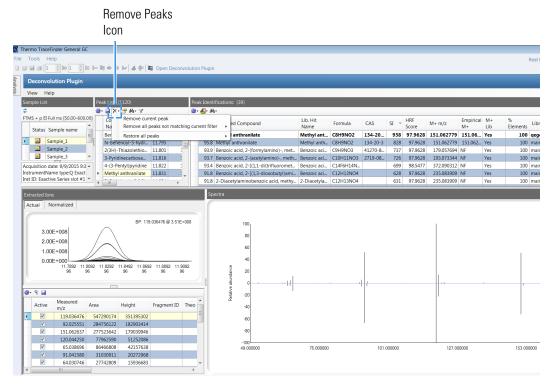
Mass calculat	tor			8
Formula:	CI(37)			
Mass: 36.9	65354			
Formula:	CI(35)			
Mass: 34.9	68304			
Mass delta	a: 1.997049			
		Ok	Cancel	

Figure 25. Using the Mass Delta Calculator

• Only Show Peaks with Library Hits — Select to filter the compound list only on those compounds which have identifications associated with them. Additional filtering based on total score, (R)HRF score, and R(SI) thresholds can be set.

Note If a sample has been processed using Reverse Search, then the threshold values entered for the (R)HRF and (R)SI apply to the reverse search score for these parameters. Otherwise these threshold values apply to the forward search values.

Further filtering based on the identified compound's formula, CAS number, matched compound name, library hit name, or synonym list names can be applied.


Library hit filters apply to the peak list only and depend on whether any of the peak's associated library hits meet the specified criteria. For example, if no library hits for a compound meet the search index threshold, then the compound does not appear in the peak list. If one or more library hits for a compound meet the threshold, the compound appears in the peak list, and all of its library hits appear regardless of whether they meet the threshold.

Removing Unwanted Peaks

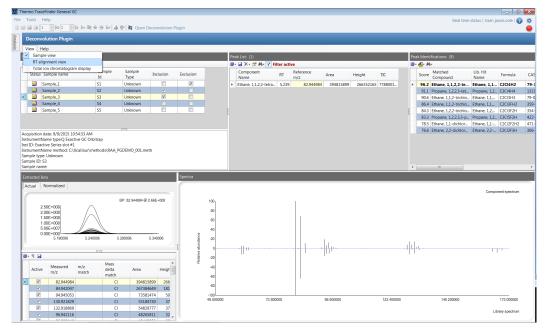
To remove unwanted peaks from processed data

1. Click the Remove Peaks icon from the Peak List. See Figure 26.

Figure 26. Locating the Remove Peaks Icon

- 2. To remove the selected compound, select Remove Current Peak.
- 3. If a filter is applied, select **Remove All Peaks Not Matching Current Filter**. After selecting this, compounds that have been removed by the applied filter do not reappear when the filter is removed. This action can be performed on the selected sample, or on all samples in the batch.
- 4. To reverse actions to remove peaks, select **Restore All Peaks**. This action can be performed on the selected sample, or on all samples in the batch.

Cross-Sample Compound Alignment (Optional)


After your data are processed, you can group compounds across the batch with similar spectra and retention times if required for your analysis. This is useful if you want to compare the response of compounds across samples in the batch. Once they are aligned, all the samples have the same list of compounds, which makes it easy to compare them. See Figure 42.

- To align the compounds by retention times
- 1. In the **Sample List** in **Sample View**, check samples as **Inclusion** or **Exclusion** samples as shown in Figure 27. Inclusion and exclusion samples will be explained in the following sections.

Sa	Sample List								
2	FTMS +	p EI Full ms [50.00-600.00]							
	Status	Sample name	Sample Id	Sample Type	Inclusion	Exclusion			
	<u>II.</u>	Sample_1	S1	Unknown		✓			
		Sample_2	S2	Unknown	 Image: A start of the start of				
►	<u></u>	Sample_3	S3	Unknown	 Image: A start of the start of				
		Sample_4	S4	Unknown					
		Sample_5	S5	Unknown					

2. Select **View > RT Alignment View**. See Figure 28.

Figure 28.	Opening the	RT Alignment View

- 3. As shown in Figure 29, click the processing icon. Under **RT Align Peaks** select either **All**, **Inclusion**, **Exclusion** or **Modified Inclusion**. These selections are explained below:
 - All Selecting All will look for all peaks detected in each processed sample in all other processed samples.
 - **Inclusion** Selecting **Inclusion** will look for only those compounds detected in samples marked inclusion samples in all other processed samples.
 - **Exclusion** Selecting **Exclusion** will look for all peaks detected in each processed sample except for those peaks also found in samples that are marked exclusion samples. An example of a sample type you might want to mark as an exclusion sample is a solvent blank, so that all peaks found in the solvent blank are removed from the batch's cross sample peak table.
 - **Modified Inclusion** Selecting **Modified Inclusion** will RT align those compounds detected in samples marked inclusion samples, except for those compounds also detected in exclusion samples.

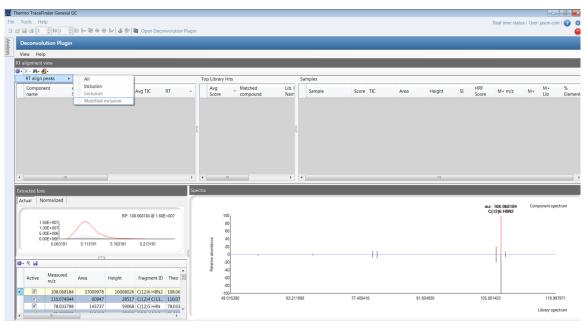


Figure 29. Aligning Compounds by Retention Times

Note This step might take a significant amount of time depending on the batch size. Large numbers of files with many compounds also consume a lot of memory. You might need to break a large batch into several smaller batches.

4. The Deconvolution Plugin **Processing** window opens. The green bars show the status of the RT alignment process. See Figure 30.

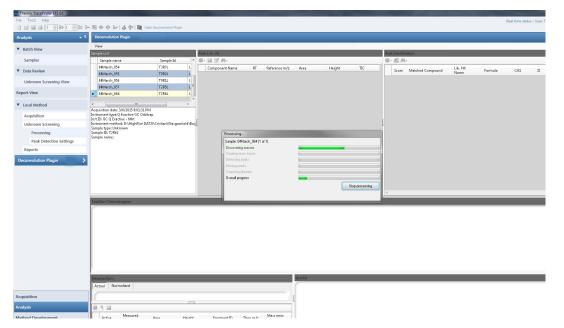
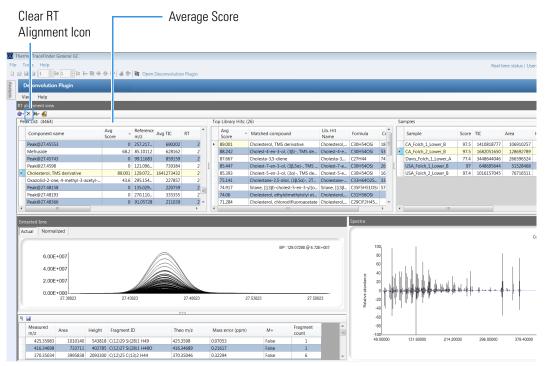



Figure 30. Aligning Compounds in Batch by Retention Times

5. The compounds are now aligned by retention times. See Figure 31.

Note RT Alignment View contains similar information to Sample View, with the addition of displaying Peak Areas of compounds across samples in the batch. It also contains the Average Score of a compound, which is the weighted average by intensity of a compound's match score across the batch. See Figure 31.

Note Once compounds are aligned by retention time, certain features of the plugin are no longer available. This is because each sample is no longer independent, and changing one affects the entire batch. To use the disabled features, you must first clear RT alignment. See Figure 31. Clearing RT alignment returns the batch to its state prior to RT alignment processing.

Exporting Library Hits to the NIST Library

This section contains instructions for exporting the accurate-mass deconvoluted spectra from an acquired compound to a .msp file for import into the NIST MS Search program.

* To export library hits to the NIST Library

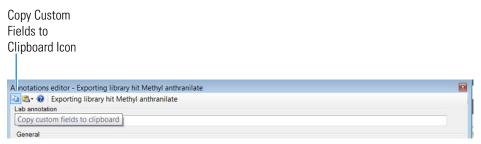
1. From the **Peak Identification** window in **Sample View**, click the **Export to NIST Library** icon. See Figure 32.

Figure 32.	Locating the Export to	NIST Library Icon
------------	------------------------	-------------------

E	kport to NIST	-						
lo	on							
🕅 Thermo TraceFinder General GC								
File Tools Help							Real time status	s User: jasc
🗋 🗃 🗃 1 🔅 🌆 1 🔅 🕼 🗁 聰 🗣 🔮 🕼 Open Deconvolutio	ugin							
Deconvolution Plugin View Help								
View Help								
	k dentifications: (39)							
	4 - M-							
FTMS + p EI Full ms [50.00-600.00] Component RT Refer / Name RT m/z	Export to NIST	Without annotations With annotations	Formula CAS	SI ~ HRF Score	M+ m/z Empiric M+	al M+ % Lib Elemer	Library	
Benzene, 1-methyl 11.786 1	98 Methyl anthranilat				151.062779 151.06		00 qegc full li	
Sample_1 N-Behenoyl-5-hydr 11.795 Sample 2 Z(3H)-Thiazolethic 11.801	95.8 Methyl anthranilate	Methyl anth		828 97.9628 737 97.9628	151.062779 151.062 179.057694 NF		00 mainlib	
Sample_2 2(3H)-Thiazolethio 11.801 1 Sample_3 3-Pvridinecarboxa 11.816		nylamino)-, met Benzoic aci tylamino)-, meth Benzoic aci			179.057694 NF 193.073344 NF		00 mainlib 00 mainlib	
Acquisition date: 9/9/2015 9:3 * 4-(3-Pentyl)pyridine 11.822 1	93.4 Benzoic acid, 2-(ace		C14F6H14N	699 98.5477	372.090312 NF		00 mainlib	
InstrumentName type:Q Exact Methyl anthranilate 11.831		-dioxobutyl)ami Benzoic aci		628 97.9628	235.083909 NF		00 mainlib	
Inst ID: Exactive Series slot #1 +	91.8 2-Diacetylaminober	zoic acid, methy 2-Diacetyla	C12H13NO4	631 97.9628	235.083909 NF	Yes 1	00 mainlib	
Extracted lons	Spectra							
Actual Normalized								Compone
BP: 119.036476 @ 3.51E+008	100,							
3.00E+008								
2.00E+008	80							
1.00E+008	60							
	40							
0.00E+000 11.7892 11.8092 11.8292 11.8492 11.8692 11.8892 11.9092								
96 96 96 96 96 96 96 96	jų 20							
	e spir		· · · ·				, i.	
l	20 april 20	I						
Active Measured Area Height Fragment ID Theo	40 -40							

- 2. Select either **Without Annotations** to export spectra without additional comments, or **With Annotations** to add additional information to the spectrum export.
- 3. If With Annotations is selected, the Annotations Editor window appears. See Figure 33

Figure 33. Viewing the Annotations Editor


<u>ته</u> 🕲	• 😧 Exporting	Exporting library g library hit Meth		ranilate								
Cont	ributor User 1											
Gen												
Cus	tom fields			Comments								
	Name	Value										
•	LabName	ThermoLab										
Sam	-1-			,								
	tom fields			Comments								
	Name	Value		o minene								
-	MatrixType	GrapesJuice										
1.	ManxType	Chapesonice										
A	Apply to all sample	es										
Libro	ry comments											
	iny comments			Comments								
-	Name	Value		This experiment was run with a source temperature of 250 C.								
	CompoundTyp		poport									
1.	Compound Typ	e i lavoicom	ponent									
			_									
				Export Cancel								

4. You can enter text annotations under **General**, **Sample**, and **Library Comments**. The plugin remembers annotations entered under General for all future spectrum exporting and those entered under Sample for future spectrum exporting for the selected sample. The plugin remembers

annotations entered under Library Comments only when exporting the spectrum from the selected compound.

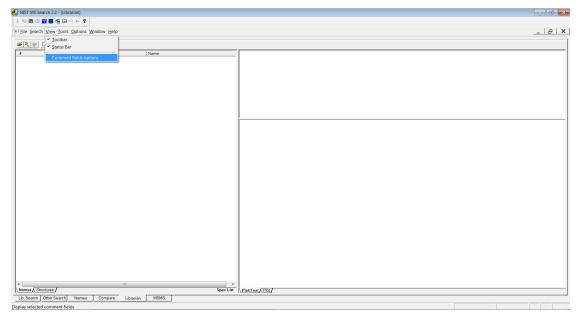

- 5. You can annotate spectra in custom fields or the general text field available in NIST formatted spectra. In order to correctly visualize custom fields imported into the NIST MS Search program, perform the following procedure.
- 6. After entering the Custom Field Names, click the Copy Custom Fields to Clipboard button in the top left corner. See Figure 34.

Figure 34. Copying Custom Fields to the Annotations Clipboard

7. In the NIST MS Search program, open the Comment Field Options. See Figure 35.

Figure 35. Opening the Comment Field Options

8. Overwrite the existing text with the comment fields copied to the clipboard. See Figure 36. Now the NIST MS Search program recognizes these fields as custom fields when importing spectra.

RI

entered.

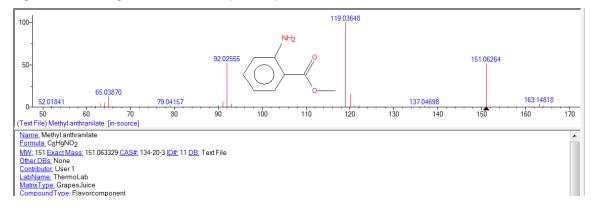
Show tag=value on plot
 OK

isplay comment field options	
To show tag=value from Comments as separate separate line.	line in spectrum text, enter tag
Contributor	
Contributor LabName	
LabName	

in the above field. Multiple lines will display multiple tag=value pairs in the order

Cancel

separate line in the text by entering the line:


Figure 36. Overwriting Existing Text with Comments

9. Follow the procedure for importing the .msp file that was exported from the deconvolution plugin, as described in the NIST MS Search help.

Help

10. Your custom fields should now appear in the imported spectra. See Figure 37.

Figure 37. Viewing Custom Fields in Imported Spectra

Importing Results into TraceFinder Software

* To import results into the TraceFinder software application

- 1. First, process all the samples in the Deconvolution Plugin application. See Processing the Data.
- 2. The Deconvolution Plugin application allows users to set the mass tolerance for high-resolution Orbitrap data and uses a mass tolerance of 500 mmu for unit resolution nominal mass data. You must change the mass tolerance in the Master Method in TraceFinder software. Go to Analysis > Local Method > Processing to change the mass tolerance. See Figure 38.

Figure 38. Setting the Mass Tolerance

	Mas	ss Tolerance		
File Local Method Tools Help	∕ ፊ ┿ ႃႃႃ	In Deconvolution Plugin		Real time status User: Ti
Analysis 👻 🎙		/iew - U_Burgess_1_U_Burgess*		
 Batch View 	Master method: [Burgess		
Samples	Peak Settings	* 0	Library Settings Database Settings Element Settings ChemSpider Settings	
▼ Data Review	Peak Detection Autocalc defau		Library Settings - Library Selection	
Unknown Screening View			Enabled Library Name	Library Type
Report View		1000000.00 Minimum MS Signal Threshold	1 2 mainlib 2 2 replib	NIST
▼ Local Method		10000000000 Maximum MS Signal Threshold	3 IZ EFS_HRAM_Spectra_Library.db	LibraryManager
		0.50 Min Peak Width	4 nist_msms 5 nist_msms2	NIST
Acquisition		1.00 Max Peak Width	6 🔲 nist_ri	NIST
Unknown Screening Processing		0.50 RT Shift (minutes)	General Library Settings	13
Peak Detection Settings		30.00 RT Window (seconds)	MS Order MS	
Reports	E la Marca	A man (second)	Use Isolation Width	
Deconvolution Plugin	Use RT Limit: Search from	0.00 minutes	NIST Settings	
	Alignment 1 Alignment 2 Ali Peaks Top Peaks Search Options Search Types Database Ubrary S Ubrary S Ubrary S Ubrary S Ubrary S Ubrary S	300 minutes 300 gemm. Mass tuterance and a pfilling Top Peaks 50 m search arch al Compatition arch chulginis Search © Simple Search	Search Type Mermal Precussor bitreace 1.000 ppm · Product training ppm · Product training ppm · Presearch Use at peak matching Presearch Use at peak matching St Threshold 200 P Probability Threshold 1.000 P Elsawy Manager Serters Sectors Tolesace 5.00 P ppm · Sectors Tolesace 5.00 P ppm ·	
Acquisition				
Analysis				
Method Development				

Note The default number of library matches in the TraceFinder application is three, which might not be enough for your needs. To increase the number of library matches, before running samples, open the **Analysis** panel in the TraceFinder application, and go to **Processing > Peak Settings**. Change the **Number of Top Library Matches** to the number you would like TraceFinder to keep.

3. Ensure that under **Search Options**, only **Library Search** is selected. Other search options aren't supported in this version of the plugin.

File Local Method Tools Help	/ 🕹 🖶 🕅 0	n Deconvolution Plugin	Real time status User: T									
Analysis 👻 🎙	Local Method	ew - U_Burgess,1_U_Burgess*										
▼ Batch View	Master method: §	Burgess										
Samples	Peak Settings Peak Detection	÷ ₽	Library Settings Database Settings Element Settings ChemSpider Settings									
Data Review		i from rawfiles	Ubrary Settings Ubrary Selection									
Unknown Screening View			Enabled Library Name Library Type									
Report View		10000000.00 Minimum MS Signal Threshold	1 2 msinib NIST 2 2 replio NIST									
		100000000.00 Maximum MS Signal Threshold	3 😨 EFS_HRAM_Spectra_Library.db LibraryManager									
▼ Local Method		0.50 Min Peak Width	4 inst_msms NIST									
Acquisition		1.00 Max Peak Width	6 nist_n NIST									
Unknown Screening			7 E W Ganada Ganada									
Processing		0.50 RT Shift (minutes)	General Library Settings									
Peak Detection Settings		30.00 RT Window (seconds)	MS Order MS •									
Reports	Use RT Limit		Use Isolation Width									
Deconvolution Plugin	All Peaks Top Peaks Search Optionse Search Dataes Victoray: Element ChemSg Highest P Echaustive	accommendation accommendation	NBT Strange Search Type Mormal Precursor Universe Precursor Universe Precursor Universe Precursor Universe Precursor Bears Search Precursor Both Precursor									
Acquisition	Number of to	op matches 50 🕏										
Analysis												
Method Development			Л									

Figure 39. Setting the Search Options

Library Search Only Checked

4. Next, under Local Method in the side menu of TraceFinder software, click Peak Detection Settings and change the Detection Algorithm to Avalon. Next, change the Detection Method to Nearest RT. TraceFinder software peak detects based on the RT and *m/z* reported by the plugin. To accurately pick the correct peak in a busy chromatogram, TraceFinder software must be set for Nearest RT rather than Highest Peak. Otherwise, TraceFinder software may find a neighboring isomer or other similar peak if it is bigger than the real peak. Also, it's recommended to set Avalon parameters as seen in Figure 40 so they closely match the peak detection settings used in the plugin.

Note Setting the peak detection settings to Avalon, Nearest RT, smoothing to 9, and mass tolerance to the same value set in the Deconvolution Plugin application processing settings makes the area and height results in TraceFinder software and the plugin more consistent. There still might be differences in the results.

etectio	n method:	Nearest RT 🔹							
moothi	ng:	9							
Time	Event	Value							
Initial	Start Threshold	1022.667							
Initial	End Threshold	511.333							
Initial	Area Threshold	50000.000							
Initial	P-P Resolution	1.000							
Initial	Bunch Factor	1.000							
Initial	Negative Peaks	Off							
Initial	Tension	0.200							
0.000	Area Threshold	50000.000							
0.000	Force Cluster On	NA							

Figure 40. Changing the Detection Method in TraceFinder

- 5. Go to Batch View on the left side menu in TraceFinder software.
- 6. Click the **Submit Batch** icon to import the samples into TraceFinder. See Figure 41.
- 7. The **Submit Options** dialog box opens. See Figure 41. Submit the batch for processing with **Unknown Screening** settings selected within TraceFinder software so that they match the processing in the Deconvolution Plugin application. The allowed setting combinations are:
 - If only peak detection was applied to samples in the plugin, select only **Peak Detect** in TraceFinder software.
 - If peak detection and library search were applied to samples in the plugin, select **Peak Detect** and **Identify** in TraceFinder software.
 - If peak detection, library search, and RT alignment were applied to samples in the plugin, select **Peak Detect**, **Identify**, and **With RT Alignment** in TraceFinder software.
 - If peak detection and RT alignment were applied to samples in the plugin, select **Peak Detect** and **With RT Alignment** in TraceFinder software.

No other combinations are allowed.

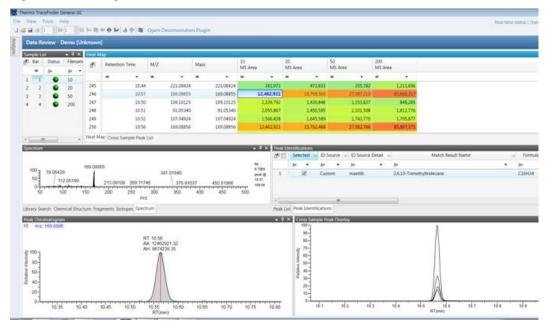

Note TraceFinder software only allows one mass tolerance to be applied to a batch.

Fig	ur	e 4	1. Set	ting	g Suk	omit	: Opti	ons		
				Sub	omit E	Batc	h			
				امما	•					
				lcoi	1					
				1.1						
Ther	mo Tra	acoEindo	r General GC	_						
_										
Eile E				_ f*					Real time sta	atus User:
		1 🗘	1 🕀 🖬 🕞 🖬	5 0 0	M 4 🕈	III Ope	n Deconvolutio	ion Plugin		
2	atch	View -	Burgess Data [Qi	uan wit	h Unknow	ml				
Analysis	atten	view -	buigess bata (Q			··u				
SS.	Loca		sticidae			•	Update	Instrument: Thermo Scientific Instrument User: jason.cole		
	Met	thod:	sticides			•	opuate	insument. menno scientific insument Oser, jasoncole		
						Oual		Sample Injection Conversion Barcode Barcode Sample Dilution	Camala	Calcula
		Statu	Filename Samp	ole type	Groups	Qual	Level	Sample ID Sample Comment Vial position Injection Conversion Barcode Barcode Sample Dilution Factor	Sample Weight	Type
	1	•	4March_050 Unkno		T1	THOSE IN THE	Submit Optio	ions	1	Manual
ľ	2		4March 051 Unkno		T2				1	Manual
	3		4March_052 Unkno		T1		User name:	jason cole	1	Manual
	3		4March_053 Unkno		T1	10	Samples:	1	1	Manual
	4		4March 054 Unkno		T3	100	Workflow step		1	Manual
	5		4March_054 Unkno 4March_055 Unkno		control		Workflow step		1	Manual
	6							Acquire data No Instrument Method Set		
	7		4March_056 Unkno		control				1	Manual
	8		4March_057 Unkno		T2					Manual
	9		4March_058 Unkno		T3 T1	10		Quantitation: Peak Detect Quantitate	1	Manual
	10		4March_059 Unkno			1		1		Manual
	11		4March_060 Unkno		T3	1		Urknown Screening : V Peak Detect V Identify V With RT Alignment	1	Manual
	12	0	4March_061 Unkno	wn	control	1.6		Create reports	1	Manual
Ē										
						_	Submit as a p	priority sequence?		
Co	mpou	nd Activ	e Status					Priority Sequence		
		RT	Compound		Active			Next Available Batch		
	1	17.91	1,3-Diphenyl ure	a	1					
	2	13.98	1-naphthyl aceta	mide	1			(a) Next Available Sample		
	3	11.37	1-Naphthyl Acet		V					
	4	11.84	2-(2,4,5-trichlord	-pheno			Start devic	ce: <- No Start Device Selected ->		
	5	10.72	2.3.5.6-Tetrachlo	roanilin	e 🗸					
	6	12.90	2.4-DB		1			Show Details OK Cancel		
	7	11.01	2,6-Dichloroben	zamide	1		-			
	8	9.74	2-Phenylphenol		V					
	9	11.62	3,4,5-Trimethaca	rb	V					
	10	13.17	3,4-Dichloroanili	ne	v					
	11	9.02	3.5-Dichloroanili	ine						
	12	13.34	3-Hydroxycarbo	furan	V					
	13	11.42	3-phenylphenol							
	14	17.96	4,4-Dibromober	zophen						
	15	14.85	4,4'-Dichloroben	zophen						
	16	13.03	4-Bromo,5-dime	thylphe	- V					

Note TraceFinder software uses retention time and base peak mass provided by the plugin application to peak detect compounds displayed in Unknown Screening View. For this reason, it might take a significant amount of time to import compounds into the TraceFinder Unknown Screening View.

8. The results appear in the TraceFinder unknowns view. See Figure 42.

Figure 42. Viewing the Results in the TraceFinder Unknowns View

9. Use the **View** menu in TraceFinder data review to choose what parameters you want to see on screen for your data review.

hermo TraceFinder EFS GC																					2.14	
																					Real time t	tatus User: Thern
 ✓ Cross Sample Peak List ✓ Heat Map 	db		> TF W	Open Q Exac	tive GC Ur	nknowns Plugir																
al Sample List	ata	Review - B	urgess (U	Inknown]																		
Peak List	2 220	ample Peak I	ist		_					_		_					_		_			
Peak Identifications												Maximur		04March 050	0	March_051	Contro		Contro	0	04March 054	Default
I . TIC Chromatogram	1	ed	Ketent	tion Time	M/Z		Mass		Mono Isotopic Ma	s hilter S	string	Maximur	n Fold	MS Area		IS Area	Averag	e Area	% CV		MS Area	Average Area
✓ XIC		-	-	•	-	•	-	•		<u>A</u> a	•	-	•			•	-	-	-	•		-
✓ XIC Overlay	14			8.66		189.09		189.09	189.0	9 FTMS	+ p El Full ms		2.12	10,802	2,279	17,718,39	1	14,260,33	15	34.29	29,718,37	6 29,7
 Group Averages 	15			8.67		171.08		171.08	171.0	8 FTMS	+ p El Full ms (1.83	2,472	2,822	3,140,79	в	2,806,81	.0	16.83	5,131,30	9 5,1
 Peak Chromatogram 	16	1		8.70		336.05		336.05	336.0	5 FTMS	+ p El Full ms		36.81	4,712	2,814	18,299,14	3	11,505,97	8	83.50	22,063,98	2 22,0
Cross Sample Peak Overlavs	17			8.77		189.09		189.09	189.0	9 FTMS	+ p El Full ms (4.43	492,313	8,036	1,218,130,13	3	855,221,58	14	60.01	1,591,414,71	8 1,591,4
 Library Search 	18			8.78		189.09		189.09	189.0	9 FTMS	+ p El Full ms (4.43	492,313	8,036	1,218,130,13	3	855,221,58	14	60.01	1,591,414,71	8 1,591,4
 Chemical Structure 	19			8.77		171.08		171.08	171.0	8 FTMS	+ p El Full ms (2.55	165,829	9,630	388,940,95	\$	277,385,29	12	56.88	388,956,14	9 388,9
 Fragments 	50			8.75		157.02		157.02	157.0	2 FTMS	+ p El Full ms (14.19	594	1,978	21,401,44	5	10,998,21	1	133.77	31,290,67	1 31,2
 Isotopes 	51			8.77		173.07		173.07	173.0	7 FTMS	+ p El Full ms (2.56	11,225	5,805	26,233,48	1	18,729,64	14	56.66	26,505,26	7 26,5
 Spectrum 																						
Grid template: Default	at M	ар			_							_		_			_					
	'≇	Retention	Time	M/Z		Mass		4March_050 IS Area	04March_0 MS Area	1	04March_052 MS Area		4March_053 //S Area	04March MS Area		04March_05 MS Area		04March_0 MS Area	56	04March_057 MS Area		
Restore default layout		-		-		-	- =		* =		=			• =		=		=				
Reports	44	-	8.66	-	189.09		89.09			718 391		29.478		6.636	29.718		161.531		0 233 149	- 16.40		
active GC Unknowns Plugin	44		8.67		171.08		71.08			140,798		29,478 54.447		16,630	5.131		820,705		2 398 143		2 842	
	45		8.70		336.05		36.05			299143		62 570		11,004	22.063		903 943		3 0 5 8 3 2 8	18 53		
	40		8.70		189.09		89.09	492.3		130,133	1,683,5		1,572,03		591,414		690.058		9,851,708	1,233,75		
	48		8.78		189.09		89.09	492,5		130,133	1,683,5		1,572,03		591,414,		690,058		9.851.708	1,233,75		
	49		8.77		171.08		71.08	165.8		940,954	451.5		412.43		388,956.		768.852		0.654.476	360.40		
	50		8.75		157.02		57.02			401.445	401,0	2.527		5.346	31,290.		727.760		1.195.940		4.936	
	50		8.77		173.07		73.07			233,481	20.0	74.623		9,450	26.505		399.058		5.617.068	24.54		
	52		8.78		228.07		28.07			605.510		21.542		3,590	28,503,		179.236		1,465,683		8.027	
	Sample	1 int	0./0		226.07		Peak L		55,004	005,510	5,1,	21,342	5.05	3.590	2,000.		eak [denti		1,403,083	133	8.027	
	i∉ Bat		Filenam	e Sample	Type			Selected	Peak ID	-0 M	Retention	n Time 👒	Area	Height	 Poter 				ID Source	ID Source	Detail 😐	Matc
	-		As .				0.0	64 -	As .	-		-			64		A		A +	As	• A	
		1		_050 Unknow			115		peak @ 16.87 1		7.11	16.87					1		Custom	replib		MS derivative
		2		_050 Unknow			116		peak @ 10.87 1 peak @ 14.17 1		8.09	14.17				_	-		Custom	mainlib		MS derivative
				052 Unknow			117		peak @ 16.32 1		8.09	16.33					3		Custom	replib		MS derivative
				053 Unknow			118		peak @ 13.96 1		18.10	13.96					4		Custom	mainlib		carbothioic acid.
				_054 Unknow			110		peak @ 15.90 1 peak @ 7.71 18		18.11	7.71					5		Custom	mainlib		acid, pentyl trans
		6		055 Unknow			119		peak @ 7.7118 peak @ 13.371		18.13			29,321,403.3			6		Custom	mainlib		acid, pentyl tran acid, 3.4-dimeth
	7			_055 Unknow _056 Unknow			120		peak @ 15.57 1 peak @ 10.36 1		18.13		108.667.019				7		Custom	replib		acia, 5,4-almetri I-α-phenylsuccin
	8	8		057 Unknow			121		peak @ 10.50 1 peak @ 9.94 18		19.08	9.94					8		Custom	mainlib		-a-phenyisuccir -3-vimethyl acet
	0	-	J**march	Lost onknow			122		peak @ 9.94 10 peak @ 10.55 1		19.09	9.94					9		Custom	mainlib		cid. ethvl ester. 2
							123		peak @ 10.55 1 peak @ 13.36 1		19.09	13.36					10		Custom	replib	,	icid, etnyl ester, le-3-propanoic a
isition							124		peak @ 13.30 1 peak @ 8.77 18		19.09			2,257,590.94			10		Custom	mainlib		e-3-propanoic a le-3-acetic acid.
ysis							125		peak @ 8.66 18		19.09		16.409.965				12		Custom	mainlib		e-5-acetic acid, de. 2-(3.3-dimeti
							120		peak @ 8.00 18		19.09			4,270,478.0 506 563 819.4			12			mainlib	Phensux	
thod Development							127			4DM 18	INTIM	8.76	744 758 803	 hum h63 819.4 					Custom	mainlib	Phensux	mide

Figure 43. Selecting Data Review Parameters in TraceFinder Software

Note For detailed information on using TraceFinder Unknowns View, see the TraceFinder user documentation or Help.

Creating a Report

After you have viewed the results of your analysis in TraceFinder software, you can export the data for further analysis; for example, into a statistical software package. The Deconvolution Plugin application supplies a sample report template for creating cross sample peak tables in a format that you can import into these applications. These templates are installed automatically with the plugin.

* To create a report using an installed template

1. Check the compounds you want to export in the **Selected** column in the **Cross Sample Peak List** tab in the TraceFinder Unknown View. No compounds are checked by default. See Figure 44.

Note This step only applies if you are using one of the Cross Sample Peak Table Report templates.

Figure 44. Checking Compounds to Export in TraceFinder Unknowns View

- 2. In TraceFinder software, go to Analysis > Report View > Local Method > Reports.
- 3. The Report View page opens. See Figure 45.

Figure 45. Report View Page

TP (A)	hermo TraceFinder General GC		- Ó 🗙
	Reporting Tools Help		Real time status User: jason.cole 👩 🔅
	🗃 🛃 🚹 1 🕀 🕪 1 🕀 🕼 🛏 🤫 🗣 🕪 🖬 🕹 🗭 🕅 Open Decon	olution Plugin	
Analysis	Report View - Demo_Batch [Unknown]		
	Template	Rules	
	Batch Report Cross Sample Peak Table 1	Sheet Name Rules	
	Cross Sample Peak Table 2	Sheet1 Batch	
	Unknown Screening High Density Report		
	Unknown Screening Summary Report		
	😫 🛞 📓 🔄 New 🔄 Open		Preview PDF V Excel CSV Print Generate
	Generated Reports		
	Template Rule Sample O	tput Generated Report File	
	aa		

4. Choose the report template you want (Cross Sample Peak Table 1 or Cross Sample Peak Table 2) from the **Template** list.

- 5. Check the correct box for the format you want for your report. The choices are **PDF**, **CSV**, **Excel**, or **Print**. Export as CSV or Excel for import into third-party software packages.
- 6. Click Generate to generate your report.

Deconvolution Plugin Application Workflow